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Food-web based unified model of macro- and microevolution
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We incorporate the generic hierarchical architecture of foodwebs intmdiéd’ model that describes both
micro- and macroevolutions within a single theoretical framework. This model describes the microevolution in
detail by accounting for the birth, ageing, and natural death of individual organisms as well as prey-predator
interactions on a hierarchical dynamic food web. It also provides a natural description of random mutations and
speciation(origination of species as well as their extinctions. The distribution of lifetimes of species follows
an approximate power law only over a limited regime.
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[. INTRODUCTION munities one needs a model of the food wdh]. A food
web [12—14 corresponding to an ecosystem is a graphic

The questions of “origin” and “evolution” have always description of prey-predator relations. More precisely, a food
fascinated scientists in all disciplines. Physicists have foweb is a directed graph where each node is labeled by a
cused attention mostly on cosmological evolution and originspecies’ name and each directed link indicates the direction
of universe. On the other hand, chemists and biologists havef flow of nutrient(i.e., from a preyto one of its predatojs
studied chemical evolutiofi.e., formation of elements and However, most often, these models assume static food webs,
compoundsas well as prebiotic evolution and origin of life. where interspecies interactions are assumed to be indepen-
Similarly, paleontologists try to understand the origin of spe-dent of time. But, in real ecosystems, species are known to
cies and evolution of ecosystems by reading “history of lifechange their food habits with timgl5]. These changes in
written on stone” in the form of fossil records. In a recent diets may be caused by scarcity of the normal food and abun-
paper[1] we developed a dynamic network model for study-dance of alternative food resources. This may also arise from
ing some generic features of the biological evolution of ecothe adaptations of the prey species that tend to avoid being
systems. In this paper we extend that model by incorporatingaten by predators through camouflage or other mechan-
the generic trophic-level architecture of food webs and shovisms. Therefore, Lotka-\olterra-type models with time-
how it can account for evolution at both ecological as well asndependent food webs cannot be expected to account for
geological time scales. macro evolution of the ecosystem ovgeological time
scales.

Limitations of both these approaches are well kngiél,
and attempts have been made to merge population dynamics

Because of the close similarity between the evolution ofand macroevolution within a single mathematical framework
interacting species and that of conventional systems of intef17]. Population dynamics is monitored in Abramson’s mac-
acting agents studied in statistical physics, several models ¢@evolutionary modef18] in a simplified manner. However,
macro evolution of ecosystems have been reported over tHebramson postulated an oversimplified model of dynami-
last decade in the physics literatuisee Refs[2—4] for re- cally evolving food web that, essentially, consists of a single
cent reviews Some of these describe macroevolution as ranfood chain. Amaral and Meyd19] developed a macroevo-
dom walks on fitness landscaf&6] (see also Ref§7,8] for ~ lutionary model with a dynamically evolving food web
reviews, while some others have been formulated in termgvhere niches are arranged in a hierarchical trophic-level ar-
of a matrix of interspecies interactiof$,9]. However, most ~ chitecture. However, population dynamics of the species
of these models of macro evolution do not account for thedoes not enter explicitly in this model. The strength of this
dynamics of populations of species even in a collective manmodel is its simplicity as some of its properties, e.g., its
ner. In other words, such models ignore biological detailss€lf-organized criticality, can be studied analyticd2p,21].
that are certainly important oacologicaltime scales and, However, we feel, more details need to be included to ad-
therefore, cannot provide a natural description of origin, evodress a wider range of biologically relevant questions.
lution, and extinctions in terms of population dynamics.

On the other hand, the Lotka-\olterra equatid®] has
been used extensively in the mathematical modeling of
population dynamics of prey-predator systems. However, for To our knowledge, our recent unified moda] is one of
the study of population dynamics of entire ecological com-the first few[22,23 that describes not only macroevolution

of origin (speciation and extinction of species on geological

time scales but also micro evolutionary processes, for ex-
*Email address: debch@iitk.ac.in ample, the birth, growtltageing, and natural death of indi-
"Email address: stauffer@thp.uni-koeln.de vidual organisms as well as the effects of prey-predator in-

Il. EARLIER MODELS AND THEIR LIMITATIONS

IIl. THE “UNIFIED” ECOSYSTEM MODEL
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FIG. 2. A schematic representation of the network model, with
hierarchicalfood-web architecture. The circles represent the niches
in the ecosystem. Each arrow represents the direction of nutrient
flow. All possible nutrient flowso the species occupying the second
node at the second level and that occupying the highest level are
shown explicitly.

FIG. 1. A schematic representation of the network model, with | h dati luti f th . K |
randomfood-web architecture, considered in REF]. The circles ~ 2MP'€, the adaptive evolution of the species takes place

represent the niches in the ecosystem. The arrows indicate the c}ihrOUgh aIterat_ions in some of their crucial characteristics by
rections of nutrient flowso the species at an arbitrary stage during "@ndom mutations. Furthermore, as the ecosystem evolves
the evolution of the ecosystem. with time, the populations of some species would drop to

zero, indicating their extinction, and the corresponding nodes

teractions on their populations. Our ‘“unified” model, would be sloyvly reoccupied by new species through the pro-
cess of speciation.

reported in Ref[1], can be schematically represented by the : _ : .
random network shown in Fig. 1. Each node of this network, At any arbitrary instant of time the model consists of
denoted by the circles, represents a niche that can be occl{t) Speciessach of which occupies one of the nodes of the
pied by at most one species at a time. In that pafigwe dynamic r;etwork. The total number of species cannot exceed
postulated a simple random, but dynamic, food web ignoring\max= (m"m>—1)/(m—1), the total number of nodes. Our
the hierarchical organization of species in food webs. In thignodel allowsN(t) to fluctuate with time over the range
paper we postulate a generic hierarchical food web, wher&N(1)<Nmax. The populatiori.e., the total number of or-
niches are arranged in different trophic levels, with biologi-92nisms of a given species, sal,at any arbitrary instant of
cally realistic interspecies interactions. timetis given byn;(t). The intra species interactions among
the organisms of the same species for limited availability of
_ resources, other than food, imposes an upper it of
A. Architecture of the network the allowed population of each species. Thus, the total num-
As in our earlier wor 1], we model the ecosystem as a ber of organismsn(t) at time t is given by n(t)
dynamicnetworkeach node of which represents a niche thatIEi’\':(tl)ni(t). Both N,,,ax @and n, .« are time-independent pa-
can be occupied by at most one species at a time. We assurrameters in the model.
a generichierarchical architectureof this network(see Fig.
2) in order to capture the organization of species in different C. Interactions in the food web
trophic levels of food webg12]. If the ith species occupies
the vth node at thefth trophic level of the food web, we
denote its position by the ordered péirv. We assume only
one single species at the highest le¥et1. Each node at
level ¢ leads tom branches at the level+1; therefore, the
maximum allowed number of nodes in levelis m‘~* and ies andk
the allowed range of is 1={=<¢{,,,. The hierarchical ar- tw?fspemes Iant ' it d herbi . ; i
chitecture helps us in capturing a well-known fact that in thethen v:/ne neenge(rea(fl p?e:c?;ltc()arss Zpe rareerr glr?éobuis Igrsfhcai ?hneirrefsy
normal ecosystems the higher is the trophic level the fewe 'ng P 99 prey
are the number of species.

Between any two speciesk that occupy two adjacent
trophic levels there is either a linkJ{==1) or no link
(Jik=0). The sign ofJ;, gives the direction of trophic flow,
i.e.itis +1 if i eatsk and it is —1 if k eatsi. Thus, J;,
=0 means that there is no prey-predator relation between the

f24]. This is very naturally incorporated in the hierarchical
food-web structure of our model by assuming that each
predator needs prey animals to survivésee factom be-
low). The maximum number of individuals on each letés

The faster dynamics within each node captures microevom times bigger than on its predator levetl 1 in the model,
lution, i.e., the birth, growti(ageing, and natural death of and when we imagine the predator mass tonbémes the
the individual organisms. Moreover, the network itself prey mass, then the maximugand initia) amount of biom-
evolves slowly over sufficiently long-time scales. For ex-ass on each level is the same. In this way, the body size and

B. The network is dynamic
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abundance of a species are strongly correlated with the food Step Il: natural deathAt any arbitrary time steg the

web and its interactions with other specf@$,24. probability (per unit time of “natural” death (due to ageinp
The J account not only for the interspecies interactionsof an individual organismy of species is py(i,;t).

but also intraspecies interactions. L%t be the number of Step IIl: mutation With probability py,,. per unit time,

all prey individuals for specieson the lower trophic level, gach of the species simultaneously increases or decreases,

andS; bemtimes the number of all predator individuals on yith equal probability, theitX,ep, Xmax, andM by unity.

t_he h_|gher tropihlc_ level. Slncg a predator eatrey per (The ages are restricted to the interval from 1 to 100, and

tlrpe_ interval,S; _gives the avall_a_ble food for specigsand M=>0.) Moreover, with the same probabilify, per unit

S, is the contribution of speciesto all predators on the time, they also readjust one of the linkgrom prey and one

higher level. If the available foo8" is less than the require- of th'e links J to predatorg9]: if the link J was zero, it is

assigned a new value df 1 whereas if the link was nonzero

ment, then some organisms of the speciadll die of star-
vation even if none of them Is killed by any predator. This it is assigned a new value of zero. These readjustments of the

way the model can account not only for the interspecies

prey-predator interactions but also for the intraspecies inters coming and outgoingin the sense of nutrient flowinter-

actions arising from the competition of individual organismsaq'ons are 'U‘e”ded to capture the facts that each species
during shortage of food supply. tries to minimize predators but quk_ for new food res+ogrces.

Note that the food resources of a given species are not Step V: starvation death and killing by prely n;— S is
restricted to only the lower branches emanating from thatarger thar; then food shortage will be the dominant cause
node but it can also exploit the species at the lower-levepf premature death of a fraction of the existing population of
nodes emanating from other nodes at its own trophic levelthe species. On the other hand, i >n,—S', then a
Moreover, note that although there is no direct interactiorfraction of the existing population will be wiped out prima-
between species at the same trophic level in our model, theyly by the predators. In order to capture these phenomena, at
can compete, albeit indirectly, with each other for the samewery time stept, in addition to the natural death due to
food resources available in the form of prey at the next Iowerageing, a further reduction of the population by
trophic level.

CmaxS ,ni—S") (1)
D. The collective characteristics of species

An arbitrary species, occupying thevth node at thefth | . . .
level is collectivelycharacterized by1] (i) the minimum re- 1S implemented whers;(t) is the population of the species
production age ¥(i), (ii) thebirth rate M(i), andii) the that survives aft_er th_e natur_al death ste_p ab@és a con-
maximum possible age,X(i). An individual of the species stant of propomona_hty. If |mplem§ntat|on of these steps
i can reproduce only after attaining the agg,(i). When- ~ Makesn;<0, species becomes extinct. .
ever an organism of this species gives birth to offsprings, Step V: speciatianAfter the extinction of, typically, half
M(i) of these are born simultaneously. None of the individu-Of the species in a trophic level, the nicliesdes left empty
als of this species can live longer thXp,..(i), even if an are refilled by new species, with probabilify,,. All the
individual manages to escape its predators. simultaneously refilled nodes in a trophic level of the net-

Note that, in several earlier works the reproductive sucwork originate fromone common ancestavhich is picked
cess was modeled mathematically by assigning a “fitness” taup randomly from among the surviving species at the same
a species or to an individual organism. The use of the terntrophic level. All the interactiond of the new species are
fitness has an interesting histof26]. In contrast to these identical to those of their common ancestor. The characteris-
earlier works, in our models, we assign a minimum repro-tic parametersX,ax, Xrep, M of each of the new species
ductive age, a maximum possible age, and the birth rate tdiffer randomly by+1 from the corresponding parameters
model the reproductive succegs failure). It has been felt for their ancestor.

[26] that fitness merely summarizes, instead of explaining,
the ability to survive and reproduce. On the other hand, the
interplay of theM, X, andXy,ax, We hope, will be able to F. Probability of birth

explain why some species survive while others become ex- We assume theime-dependenprobability py(i,a) (of

tinct. individual « in speciesi) of giving birth per unit time to
_ decrease linearly with age, from its maximum value, attain-
E. The dynamics of the ecosystem able at the minimum reproduction age, down to zero at the
The state of the system is updated in discrete time steps @aximum lifespan. It is multiplied with a Verhulst factor 1
follows: —nN;/Nnax and equals this factor al=X,. Thus, in the

Step I: birth Assuming, for the sake of simplicity, the limit of vanishingly small population, i.en;—0, we have
reproduction to beasexual each individual organisna [ « Pp(i,a)— 1 if X(i,a)=Xep(i) and, thereaftep,, decreases
=1,...0n(t)] of the species[i=1,2, ... N(t)) is allowed linearly[27] as the organism grows older. However, since the
to give birth toM(i;t) offsprings at every time stepwith ~ ecosystem can support only a maximummgf,, individual
probability (per unit timé p,(i,a;t) which is nonzero only organisms of each speciegy(i,a;t)—0 asn;(t)— Npnax,
when the individual organism’s agé(i, a;t)=X¢(i;t). irrespective of the age of the individual organisni28].
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10M FIG. 4. Semilog plot of the distributions &%, (%) andXax,
1M taken from the simulations symbolized by the curved line in the
100000 lower part of Fig. 22m=2, {=5,n,,,=100,t=60 000, 640 sys-
10000 tems.
g 1000 Xep randomly between 1 and,,,,, and the population ran-
[ L
3 100 domly between 1 ana,,,/2. The ages of the individuals
10 vary randomly between 1 and,,, of their species.
1 Going through all the five steps mentioned above for all
01 the individuals of each species constitutes time step(“it-
' h eration”) in our model; all times in this model are measured
0.01 L, : - : X ] in the units of these “iterations.” The longest runs in our
1 10 100 1000 10000 computer simulations were continued up to a million time
litetime steps. If each time step in our model is assumed to corre-

spond to a real time of the order of 1 yr, then the time scale
species in an ecosystem with,, = 10— 10 and 600—60 000 itera- of a million years, over which we have mqnitO(ed our model
tions. The line with slope-2 corresponds to a power law distribu- €C0SYStem, is comparable to real speciation time scales.
tion that has been predicted by many theories. The common param-

eters for both plots aren=2, £=5 (i.e., Npa=31), psp=0.1, A. Lifetime distributions

Pmur=0.0001,C=0.05. In the upper plot, the symbols, X, and

* correspond tay,,,= 107, 10°, and 16 averaged over 6400, 640,
and 64 systems, respectively. In the lower pigt,,= 1000 (except
for the line wheren,,,,= 100) and the maximum simulation time is
600 (+) and 60000 K and line iterations; * corresponds tm

FIG. 3. Log-log plots of the distributions of the lifetimes of the

The average distributions of the lifetimes of the species
are plotted in Fig. 3 for various sets of values of the param-
eters. Only very approximately, the data are consistent with a

=12, =3 after 6000 iterations; 640 systems were averaged over 1 T L " ' ' ' '
for short and intermediate times, and 64 for the longest time. Each 04 X 1
system started from a new random initial state. )
- 0.01 ]
G. Probability of natural death -
Similarly, we assume the probabilitpy of “natural” E 0.001 i
death(due to ageingto increase linearly with agk?9] and o
. . . . o 0.0001 E
to reach unity at the maximum lifespa§, ., of the species:
Pa= (XM _xrep)/(xmaxM _xrep)- (For X<xrep the death 0.00001 i "'_‘ 1
probability, instead, has the constant value thaattains at . y
X=Xep; if the above denominator is negativpg=1.) 0.000001 . 1
N_ote th_at, for a giverX,axand X, the larger is the_M the 0 5 10 15 20 25 30 45
higher is thep, for any ageX. Therefore, each species has a __
. . . litter size
tendency to increask! for giving birth to larger number of
offsprings whereas the higher mortality for higimopposes FIG. 5. Semilog plot of the distribution d¥1. The parameter
this tendency30]. values are same as those in Fig. 4; shorter and longer simulations
are added to show further broadening of the distribution. The sym-
IV. RESULTS bols +, X, and * correspond to 600, 60 000, and 600 000 itera-

) _ o ) o tions, respectively, using 6400, 640, and 1 systems. The lower lines,
In our simulations initially, M =10X,, is distributed  using 64 lattices wittn,,,=100, t=6000, show the broadening
randomly between 2 and 99 independently for each speciesth increasing mutation ratg,,,,=0.00001, 0.001, and 0.01.
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FIG. 7. Log-log plot of the distribution of lifetimes for the
whole ecosystem of trophic layers, witht =5, m=2 and¢=3,
m=6, from 1 and 10 systems only;,,,= 100.

FIG. 6. Log-log plot of the distribution of lifetimes for specia-
tion probabilities ps,=0.02(+) and 0.5 (<), and (squares,
with  pg,=0.1) for Gompertz mortality assumption:py
= exd(max(X,Xep) —Xmad/M], using 640 systems fon,,,=100
andt=6000. same figure also shows a somewhat better power law at short
times if the above linear increase of the mortality with age is

power law; the effective exponent, which4s2, is also con- replaced by an exponential increa€ombpertz law 27
sistent with the corresponding estimate quoted in the litera- P y P & P wW27).

ture[2,3]. However, in Fig. 3 the power law holds only over
a limited range[31] of times; for longer times a plateau
seems to develop. Since real ecosystems are much more We model an ecosystem withfixednumber{ of trophic
complex than our model ecosystem and the available fosslevels; thus as soon as we find one level to be extinct com-
data are quite sparse, it is questionable whether real extingletely, we regard the ecosystem as destroyed and try to
tions follow power laws and, if so, over how many orders ofbuild a new one for the same parameters, changing only the
magnitude. random numbers. Hundreds of such attempts are needed for a
successful system lasting the prescribed numlige as
B. Distributions of Species Characteristics 6000 of iterations, see Fig. 7. This method simulates the

Figures 4 and 5 show the time-averaged distributions obillions of years which natural evolution needed to build the
Xmax» Xrep» andM. We see that the minimum age of repro- Present life on the earth.
duction X, is quite small, as usual in a similar ageing
model[32]. The age distributioiinot shown decays stronger
than a simple exponential, indicating a mortality increasing
with age as it should b¢29]. The genetic death ages 5 4,
<Xmax< 100 reach ages far above the upper erfaD of the
age distributior(for the species on top of the food wehs is
appropriate for animals in the wil@27]. Finally, Fig. 5
shows the distribution df1 (i) which is still broadening even
after 60 000 iterations.

C. Collapse of fragile ecosystems

V. SUMMARY AND CONCLUSION

In summary, we have presented a unified model which
scribes not only the birth, ageing, and death of individuals
as well as population dynamics on short time scales but also
the long-time evolution of species, their originati@pecia-
tion), and extinction. The total number of species, the inter-
species interactions, and the collective characteristics,

) ) namely,X;ep,Xmax, @ndM, of each species vary following a
We have also observedot shown that the higher is the = gy, chastic dynamics with Darwinian selection. Thus, our
mutation probabilitypy,,; the lower is the lifetime of the ., 46l is capable afelf-organization

ecosystem; this is consistent with the intuitive expectation
that a higher rate of mutation leads to higher levels of bio-
logical activity in the ecosystem thereby leading to the ex-
tinction of larger number of species. Figure 5 from these data We thank J. E. Cohen for emphasizing to us the impor-
shows that the broadening of the histogram ffbri.e., the tance of food webs and the Supercomputer Centigghltor
equilibration process, is determined by the progugit giv-  computer time on their CRAY-T3E. This work was supported
ing the average number of mutations per species. By, by Deutsche Forschungsgemeinschaft through an Indo-
had weaker effect on the same data as shown in Fig. 6. Th@erman joint research project.
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