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Food-web based unified model of macro- and microevolution
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We incorporate the generic hierarchical architecture of foodwebs into a ‘‘unified’’ model that describes both
micro- and macroevolutions within a single theoretical framework. This model describes the microevolution in
detail by accounting for the birth, ageing, and natural death of individual organisms as well as prey-predator
interactions on a hierarchical dynamic food web. It also provides a natural description of random mutations and
speciation~origination! of species as well as their extinctions. The distribution of lifetimes of species follows
an approximate power law only over a limited regime.
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I. INTRODUCTION

The questions of ‘‘origin’’ and ‘‘evolution’’ have always
fascinated scientists in all disciplines. Physicists have
cused attention mostly on cosmological evolution and ori
of universe. On the other hand, chemists and biologists h
studied chemical evolution~i.e., formation of elements an
compounds! as well as prebiotic evolution and origin of life
Similarly, paleontologists try to understand the origin of sp
cies and evolution of ecosystems by reading ‘‘history of l
written on stone’’ in the form of fossil records. In a rece
paper@1# we developed a dynamic network model for stud
ing some generic features of the biological evolution of e
systems. In this paper we extend that model by incorpora
the generic trophic-level architecture of food webs and sh
how it can account for evolution at both ecological as well
geological time scales.

II. EARLIER MODELS AND THEIR LIMITATIONS

Because of the close similarity between the evolution
interacting species and that of conventional systems of in
acting agents studied in statistical physics, several mode
macro evolution of ecosystems have been reported ove
last decade in the physics literature~see Refs.@2–4# for re-
cent reviews!. Some of these describe macroevolution as r
dom walks on fitness landscape@5,6# ~see also Refs.@7,8# for
reviews!, while some others have been formulated in ter
of a matrix of interspecies interactions@4,9#. However, most
of these models of macro evolution do not account for
dynamics of populations of species even in a collective m
ner. In other words, such models ignore biological deta
that are certainly important onecological time scales and
therefore, cannot provide a natural description of origin, e
lution, and extinctions in terms of population dynamics.

On the other hand, the Lotka-Volterra equation@10# has
been used extensively in the mathematical modeling
population dynamics of prey-predator systems. However,
the study of population dynamics of entire ecological co
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munities one needs a model of the food web@11#. A food
web @12–14# corresponding to an ecosystem is a grap
description of prey-predator relations. More precisely, a fo
web is a directed graph where each node is labeled b
species’ name and each directed link indicates the direc
of flow of nutrient~i.e., from a preyto one of its predators!.
However, most often, these models assume static food w
where interspecies interactions are assumed to be inde
dent of time. But, in real ecosystems, species are know
change their food habits with time@15#. These changes in
diets may be caused by scarcity of the normal food and ab
dance of alternative food resources. This may also arise f
the adaptations of the prey species that tend to avoid b
eaten by predators through camouflage or other mech
isms. Therefore, Lotka-Volterra-type models with tim
independent food webs cannot be expected to accoun
macro evolution of the ecosystem overgeological time
scales.

Limitations of both these approaches are well known@16#,
and attempts have been made to merge population dyna
and macroevolution within a single mathematical framewo
@17#. Population dynamics is monitored in Abramson’s ma
roevolutionary model@18# in a simplified manner. However
Abramson postulated an oversimplified model of dynam
cally evolving food web that, essentially, consists of a sin
food chain. Amaral and Meyer@19# developed a macroevo
lutionary model with a dynamically evolving food we
where niches are arranged in a hierarchical trophic-level
chitecture. However, population dynamics of the spec
does not enter explicitly in this model. The strength of th
model is its simplicity as some of its properties, e.g.,
self-organized criticality, can be studied analytically@20,21#.
However, we feel, more details need to be included to
dress a wider range of biologically relevant questions.

III. THE ‘‘UNIFIED’’ ECOSYSTEM MODEL

To our knowledge, our recent unified model@1# is one of
the first few@22,23# that describes not only macroevolutio
of origin ~speciation! and extinction of species on geologic
time scales but also micro evolutionary processes, for
ample, the birth, growth~ageing!, and natural death of indi-
vidual organisms as well as the effects of prey-predator
©2003 The American Physical Society01-1
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teractions on their populations. Our ‘‘unified’’ mode
reported in Ref.@1#, can be schematically represented by t
random network shown in Fig. 1. Each node of this netwo
denoted by the circles, represents a niche that can be o
pied by at most one species at a time. In that paper@1# we
postulated a simple random, but dynamic, food web ignor
the hierarchical organization of species in food webs. In t
paper we postulate a generic hierarchical food web, wh
niches are arranged in different trophic levels, with biolo
cally realistic interspecies interactions.

A. Architecture of the network

As in our earlier work@1#, we model the ecosystem as
dynamicnetworkeach node of which represents a niche t
can be occupied by at most one species at a time. We ass
a generichierarchical architectureof this network~see Fig.
2! in order to capture the organization of species in differ
trophic levels of food webs@12#. If the i th species occupie
the nth node at the,th trophic level of the food web, we
denote its position by the ordered pair,,n. We assume only
one single species at the highest level,51. Each node at
level , leads tom branches at the level,11; therefore, the
maximum allowed number of nodes in level, is m,21 and
the allowed range of, is 1<,<,max. The hierarchical ar-
chitecture helps us in capturing a well-known fact that in
normal ecosystems the higher is the trophic level the fe
are the number of species.

B. The network is dynamic

The faster dynamics within each node captures microe
lution, i.e., the birth, growth~ageing!, and natural death o
the individual organisms. Moreover, the network its
evolves slowly over sufficiently long-time scales. For e

FIG. 1. A schematic representation of the network model, w
random food-web architecture, considered in Ref.@1#. The circles
represent the niches in the ecosystem. The arrows indicate th
rections of nutrient flowsto the species at an arbitrary stage duri
the evolution of the ecosystem.
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ample, the adaptive evolution of the species takes pl
through alterations in some of their crucial characteristics
random mutations. Furthermore, as the ecosystem evo
with time, the populations of some species would drop
zero, indicating their extinction, and the corresponding no
would be slowly reoccupied by new species through the p
cess of speciation.

At any arbitrary instant of timet the model consists o
N(t) specieseach of which occupies one of the nodes of t
dynamic network. The total number of species cannot exc
Nmax5(m,max21)/(m21), the total number of nodes. Ou
model allowsN(t) to fluctuate with time over the range,
<N(t)<Nmax. The population~i.e., the total number of or-
ganisms! of a given species, say,i, at any arbitrary instant of
time t is given byni(t). The intra species interactions amon
the organisms of the same species for limited availability
resources, other than food, imposes an upper limitnmax of
the allowed population of each species. Thus, the total n
ber of organisms n(t) at time t is given by n(t)
5( i 51

N(t)ni(t). Both Nmax andnmax are time-independent pa
rameters in the model.

C. Interactions in the food web

Between any two speciesi ,k that occupy two adjacen
trophic levels there is either a link (Jik561) or no link
(Jik50). The sign ofJik gives the direction of trophic flow,
i.e. it is 11 if i eatsk and it is 21 if k eats i. Thus, Jik
50 means that there is no prey-predator relation between
two speciesi andk.

If we neglect parasites and herbivorous insects on tre
then, in general, predators are rarer and bigger than their
@24#. This is very naturally incorporated in the hierarchic
food-web structure of our model by assuming that ea
predator needsm prey animals to survive~see factorm be-
low!. The maximum number of individuals on each level, is
m times bigger than on its predator level,21 in the model,
and when we imagine the predator mass to bem times the
prey mass, then the maximum~and initial! amount of biom-
ass on each level is the same. In this way, the body size

di-

FIG. 2. A schematic representation of the network model, w
hierarchical food-web architecture. The circles represent the nic
in the ecosystem. Each arrow represents the direction of nutr
flow. All possible nutrient flowsto the species occupying the secon
node at the second level and that occupying the highest leve
shown explicitly.
1-2
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abundance of a species are strongly correlated with the
web and its interactions with other species@25,24#.

The J account not only for the interspecies interactio
but also intraspecies interactions. LetSi

1 be the number of
all prey individuals for speciesi on the lower trophic level,
andSi

2 bem times the number of all predator individuals o
the higher trophic level. Since a predator eatsm prey per
time interval,Si

1 gives the available food for speciesi, and
Si

2 is the contribution of speciesi to all predators on the
higher level. If the available foodSi

1 is less than the require
ment, then some organisms of the speciesi will die of star-
vation, even if none of them is killed by any predator. Th
way the model can account not only for the interspec
prey-predator interactions but also for the intraspecies in
actions arising from the competition of individual organism
during shortage of food supply.

Note that the food resources of a given species are
restricted to only the lower branches emanating from t
node but it can also exploit the species at the lower-le
nodes emanating from other nodes at its own trophic le
Moreover, note that although there is no direct interact
between species at the same trophic level in our model,
can compete, albeit indirectly, with each other for the sa
food resources available in the form of prey at the next low
trophic level.

D. The collective characteristics of species

An arbitrary speciesi, occupying thenth node at the,th
level is collectivelycharacterized by@1# ~i! the minimum re-
production age Xrep( i ), ~ii ! thebirth rate M( i ), and~iii ! the
maximum possible age Xmax( i ). An individual of the species
i can reproduce only after attaining the ageXrep( i ). When-
ever an organism of this species gives birth to offsprin
M ( i ) of these are born simultaneously. None of the individ
als of this species can live longer thanXmax( i ), even if an
individual manages to escape its predators.

Note that, in several earlier works the reproductive s
cess was modeled mathematically by assigning a ‘‘fitness
a species or to an individual organism. The use of the te
fitness has an interesting history@26#. In contrast to these
earlier works, in our models, we assign a minimum rep
ductive age, a maximum possible age, and the birth rat
model the reproductive success~or failure!. It has been felt
@26# that fitness merely summarizes, instead of explaini
the ability to survive and reproduce. On the other hand,
interplay of theM ,Xrep , andXmax, we hope, will be able to
explain why some species survive while others become
tinct.

E. The dynamics of the ecosystem

The state of the system is updated in discrete time step
follows:

Step I: birth. Assuming, for the sake of simplicity, th
reproduction to beasexual, each individual organisma @a
51, . . . ,ni(t)# of the speciesi @ i 51,2, . . . ,N(t)) is allowed
to give birth toM ( i ;t) offsprings at every time stept with
probability ~per unit time! pb( i ,a;t) which is nonzero only
when the individual organism’s ageX( i ,a;t)>Xrep( i ;t).
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Step II: natural deathAt any arbitrary time stept the
probability ~per unit time! of ‘‘natural’’ death ~due to ageing!
of an individual organisma of speciesi is pd( i ,a;t).

Step III: mutation. With probability pmut per unit time,
each of the species simultaneously increases or decre
with equal probability, theirXrep , Xmax, and M by unity.
~The ages are restricted to the interval from 1 to 100, a
M.0.! Moreover, with the same probabilitypmut per unit
time, they also readjust one of the linksJ from prey and one
of the links J to predators@9#; if the link J was zero, it is
assigned a new value of61 whereas if the link was nonzer
it is assigned a new value of zero. These readjustments o
incoming and outgoing~in the sense of nutrient flow! inter-
actions are intended to capture the facts that each spe
tries to minimize predators but look for new food resourc

Step IV: starvation death and killing by prey. If ni2Si
1 is

larger thanSi
2 then food shortage will be the dominant cau

of premature death of a fraction of the existing population
the speciesi. On the other hand, ifSi

2.ni2Si
1 , then a

fraction of the existing population will be wiped out prima
rily by the predators. In order to capture these phenomen
every time stept, in addition to the natural death due t
ageing, a further reduction of the population by

Cmax~Si
2 ,ni2Si

1! ~1!

is implemented whereni(t) is the population of the speciesi
that survives after the natural death step above.C is a con-
stant of proportionality. If implementation of these ste
makesni<0, speciesi becomes extinct.

Step V: speciation. After the extinction of, typically, half
of the species in a trophic level, the niches~nodes! left empty
are refilled by new species, with probabilitypsp . All the
simultaneously refilled nodes in a trophic level of the n
work originate fromone common ancestorwhich is picked
up randomly from among the surviving species at the sa
trophic level. All the interactionsJ of the new species are
identical to those of their common ancestor. The characte
tic parametersXmax, Xrep , M of each of the new specie
differ randomly by61 from the corresponding paramete
for their ancestor.

F. Probability of birth

We assume thetime-dependentprobability pb( i ,a) ~of
individual a in speciesi ) of giving birth per unit time to
decrease linearly with age, from its maximum value, atta
able at the minimum reproduction age, down to zero at
maximum lifespan. It is multiplied with a Verhulst factor
2ni /nmax and equals this factor atX5Xrep . Thus, in the
limit of vanishingly small population, i.e.,ni→0, we have
pb( i ,a)→1 if X( i ,a)5Xrep( i ) and, thereafter,pb decreases
linearly @27# as the organism grows older. However, since
ecosystem can support only a maximum ofnmax individual
organisms of each species,pb( i ,a;t)→0 as ni(t)→nmax,
irrespective of the age of the individual organisma @28#.
1-3
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G. Probability of natural death

Similarly, we assume the probabilitypd of ‘‘natural’’
death~due to ageing! to increase linearly with age@29# and
to reach unity at the maximum lifespanXmax of the species:
pd5(XM2Xrep)/(XmaxM2Xrep). ~For X,Xrep the death
probability, instead, has the constant value thatpd attains at
X5Xrep ; if the above denominator is negative,pd51.!
Note that, for a givenXmax andXrep , the larger is theM the
higher is thepd for any ageX. Therefore, each species has
tendency to increaseM for giving birth to larger number of
offsprings whereas the higher mortality for higherM opposes
this tendency@30#.

IV. RESULTS

In our simulations initially,M510,Xmax is distributed
randomly between 2 and 99 independently for each spec

FIG. 3. Log-log plots of the distributions of the lifetimes of th
species in an ecosystem withnmax5102–104 and 600–60 000 itera
tions. The line with slope22 corresponds to a power law distribu
tion that has been predicted by many theories. The common pa
eters for both plots arem52, ,55 ~i.e., Nmax531), psp50.1,
pmut50.0001,C50.05. In the upper plot, the symbols1, 3, and
* correspond tonmax5102, 103, and 104 averaged over 6400, 640
and 64 systems, respectively. In the lower plot,nmax51000~except
for the line wherenmax5100) and the maximum simulation time
600 ~1! and 60 000 (3 and line! iterations; * corresponds tom
512, ,53 after 6000 iterations; 640 systems were averaged o
for short and intermediate times, and 64 for the longest time. E
system started from a new random initial state.
04190
s,

Xrep randomly between 1 andXmax, and the population ran
domly between 1 andnmax/2. The ages of the individuals
vary randomly between 1 andXmax of their species.

Going through all the five steps mentioned above for
the individuals of each species constitutes onetime step~‘‘it-
eration’’! in our model; all times in this model are measur
in the units of these ‘‘iterations.’’ The longest runs in o
computer simulations were continued up to a million tim
steps. If each time step in our model is assumed to co
spond to a real time of the order of 1 yr, then the time sc
of a million years, over which we have monitored our mod
ecosystem, is comparable to real speciation time scales.

A. Lifetime distributions

The average distributions of the lifetimes of the spec
are plotted in Fig. 3 for various sets of values of the para
eters. Only very approximately, the data are consistent wi

m-

er
h

FIG. 4. Semilog plot of the distributions ofXrep (3) andXmax,
taken from the simulations symbolized by the curved line in
lower part of Fig. 2:m52, ,55,nmax5100, t560 000, 640 sys-
tems.

FIG. 5. Semilog plot of the distribution ofM. The parameter
values are same as those in Fig. 4; shorter and longer simula
are added to show further broadening of the distribution. The s
bols 1, 3, and * correspond to 600, 60 000, and 600 000 ite
tions, respectively, using 6400, 640, and 1 systems. The lower li
using 64 lattices withnmax5100, t56000, show the broadening
with increasing mutation ratepmut50.00001, 0.001, and 0.01.
1-4
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power law; the effective exponent, which is'2, is also con-
sistent with the corresponding estimate quoted in the lite
ture @2,3#. However, in Fig. 3 the power law holds only ove
a limited range@31# of times; for longer times a platea
seems to develop. Since real ecosystems are much m
complex than our model ecosystem and the available fo
data are quite sparse, it is questionable whether real ex
tions follow power laws and, if so, over how many orders
magnitude.

B. Distributions of Species Characteristics

Figures 4 and 5 show the time-averaged distributions
Xmax, Xrep , andM. We see that the minimum age of repr
duction Xrep is quite small, as usual in a similar agein
model@32#. The age distribution~not shown! decays stronge
than a simple exponential, indicating a mortality increas
with age as it should be@29#. The genetic death ages
,Xmax,100 reach ages far above the upper end.50 of the
age distribution~for the species on top of the food web!, as is
appropriate for animals in the wild@27#. Finally, Fig. 5
shows the distribution ofM ( i ) which is still broadening even
after 60 000 iterations.

We have also observed~not shown! that the higher is the
mutation probabilitypmut the lower is the lifetime of the
ecosystem; this is consistent with the intuitive expectat
that a higher rate of mutation leads to higher levels of b
logical activity in the ecosystem thereby leading to the
tinction of larger number of species. Figure 5 from these d
shows that the broadening of the histogram forM, i.e., the
equilibration process, is determined by the productpmutt giv-
ing the average number of mutations per species. But,psp
had weaker effect on the same data as shown in Fig. 6.

FIG. 6. Log-log plot of the distribution of lifetimes for specia
tion probabilities psp50.02(1) and 0.5 (3), and ~squares,
with psp50.1) for Gompertz mortality assumption:pd

5exp@(max(X,Xrep)2Xmax)/M#, using 640 systems fornmax5100
and t56000.
tt.

0
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same figure also shows a somewhat better power law at s
times if the above linear increase of the mortality with age
replaced by an exponential increase~Gompertz law@27#!.

C. Collapse of fragile ecosystems

We model an ecosystem with afixednumber, of trophic
levels; thus as soon as we find one level to be extinct co
pletely, we regard the ecosystem as destroyed and tr
build a new one for the same parameters, changing only
random numbers. Hundreds of such attempts are needed
successful system lasting the prescribed number~like as
6000! of iterations, see Fig. 7. This method simulates t
billions of years which natural evolution needed to build t
present life on the earth.

V. SUMMARY AND CONCLUSION

In summary, we have presented a unified model wh
describes not only the birth, ageing, and death of individu
as well as population dynamics on short time scales but
the long-time evolution of species, their origination~specia-
tion!, and extinction. The total number of species, the int
species interactions, and the collective characterist
namely,Xrep ,Xmax, andM, of each species vary following a
stochastic dynamics with Darwinian selection. Thus, o
model is capable ofself-organization.
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FIG. 7. Log-log plot of the distribution of lifetimes for the
whole ecosystem of, trophic layers, with,55, m52 and,53,
m56, from 1 and 10 systems only;nmax5100.
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leriani ~Springer Verlag, Berlin, 2002!.

@17# P.A. Rikvold and R.K.P. Zia, e-print nlin.AO/0303010.
@18# G. Abramson, Phys. Rev. E55, 785 ~1997!.
@19# L.A.N. Amaral and M. Meyer, Phys. Rev. Lett.82, 652~1999!.
@20# B. Drossel, Phys. Rev. Lett.81, 5011~1998!.
@21# J. Camacho and R.V. Sole, Phys. Rev. E62, 1119~2000!.
@22# A. Nowicka, A. Duda, and M.R. Dudek, e-prin

cond-mat/0207198.
@23# A. Laszkiewicz, Sz. Szymczak, and S. Cebrat, Int. J. Mo

Phys. C14, 6 ~2003!.
@24# J.E. Cohen, T. Jonsson, and S.R. Carpenter, Proc. Natl. A

Sci. U.S.A.100, 1781~2003!.
@25# J.E. Cohen, S.L. Pimm, P. Yodzis, and J. Saldana, J. An

Ecol. 62, 67 ~1993!.
@26# J.F.Y. Brookfield, Nature~London! 411, 999 ~2001!.
@27# S. N. Austad, inBetween Zeus and the Salmon: The Biodem

raphy of Longevity, edited by K. W. Wachter and C. E. Finc
~National Academy Press, Washington, DC, 1997!, p. 162.

@28# J.S. Sa´ Martins and S. Cebrat, Theory Biosci.199, 156~2000!.
@29# J.R. Carey, Exp. Gerontol.37, 567 ~2002!.
@30# C.K. Ghalambor and T.E. Martin, Science292, 494 ~2001!.
@31# C. Adami and J.H. Chu, Phys. Rev. E66, 011907~2002!.
@32# D. Stauffer and J.P. Radomski, Exp. Gerontol.37, 175 ~2001!.
1-6


